Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity.

نویسندگان

  • P J Butler
  • G Norwich
  • S Weinbaum
  • S Chien
چکیده

Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (tau) on the lipid fluidity of 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC(16)(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient (D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-tau of 10 or 20 dyn/cm(2), and after the cessation of tau. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-tau of 10 dyn/cm(2), D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of tau. D returned to near control values within 5 s after cessation of tau. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-tau of 10 dyn/cm(2) elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-tau of 20 dyn/cm(2) caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence.

Fluid shear stress (FSS) has been shown to be an ubiquitous stimulator of mammalian cell metabolism. Although many of the intracellular signal transduction pathways have been characterized, the primary mechanoreceptor for FSS remains unknown. One hypothesis is that the cytoplasmic membrane acts as the receptor for FSS, leading to increased membrane fluidity, which in turn leads to the activatio...

متن کامل

Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.

Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell me...

متن کامل

Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.

Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an importan...

متن کامل

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels

Gojova, Andrea, and Abdul I. Barakat. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98: 2355–2362, 2005. First published February 10, 2005; doi:10.1152/japplphysiol.01136.2004.— Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Rece...

متن کامل

G protein-coupled receptors sense fluid shear stress in endothelial cells.

Hemodynamic shear stress stimulates a number of intracellular events that both regulate vessel structure and influence development of vascular pathologies. The precise molecular mechanisms by which endothelial cells transduce this mechanical stimulus into intracellular biochemical response have not been established. Here, we show that mechanical perturbation of the plasma membrane leads to liga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 2001